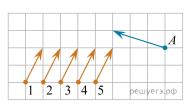

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

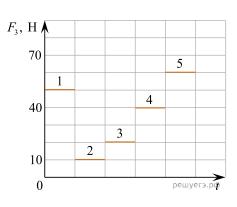
1. На рисунке представлен график зависимости координаты велосипедиста от времени его движения. Начальная координата x_0 велосипедиста равна:

1) 14 m 2) 18 m 3) 20 m 4) 24 m 5) 26 m

2. На рисунке точками обозначены положения частиц и стрелками показаны скорости их движения в некоторый момент времени. Если все частицы движутся равномерно и прямолинейно, то с частицей A столкнётся частица, обозначенная цифрой: Примечание. Повторные столкновения частиц не рассматривать.

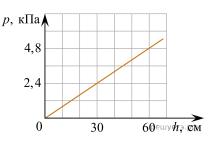
1) 1 2) 2 3) 3 4) 4 5) 5

3. Голубь пролетел путь из пункта A в пункт B, а затем вернулся обратно, двигаясь с одной и той же скоростью относительно воздуха. При попутном ветре, скорость которого была постоянной, путь AB голубь пролетел за промежуток времени $\Delta t_1 = 24$ мин, а путь BA при встречном ветре — за промежуток времени $\Delta t_2 = 40$ мин.


В безветренную погоду путь AB голубь пролетел бы за промежуток времени Δt_3 , равный:

1) 28 мин 2) 30 мин 3) 34 мин 4) 36 мин 5) 38 мин

4. Модуль скорости движения v_1 первого тела массой m_1 в два раза больше модуля скорости движения v_2 второго тела массой m_2 . Если кинетические энергии этих тел равны ($E_{k1} = E_{k2}$), то отношение массы второго тела к массе первого тела равно:

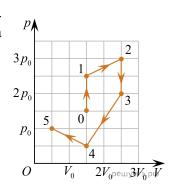

1) $\frac{1}{2}$ 2) 1 3) $\sqrt{2}$ 4) 2 5) 4

5. Тело двигалось в пространстве под действием трёх постоянных по направлению сил \vec{F}_1 , \vec{F}_2 , \vec{F}_3 . Модуль первой силы $F_1=10$ H, второй — $F_2=35$ H. Модуль третьей силы F_3 на разных участках пути изменялся со временем так, как показано на графике. Если известно, что только на одном участке тело двигалось равномерно, то на графике этот участок обозначен цифрой:

1) 1 2) 2 3) 3 4) 4 5)

6. На рисунке изображён график зависимости гидростатического давления p от глубины h для жидкости, плотность ρ которой равна:

1) 1,2 $\frac{\Gamma}{\text{cm}^3}$ 2) 1,1 $\frac{\Gamma}{\text{cm}^3}$ 3) 1,0 $\frac{\Gamma}{\text{cm}^3}$ 4) 0,90 $\frac{\Gamma}{\text{cm}^3}$ 5) 0,80 $\frac{\Gamma}{\text{cm}^3}$


7. В Международной системе единиц (СИ) удельная теплота сгорания топлива измеряется в:

1) $\frac{\square \mathbb{X}}{\mathbb{K}\Gamma \cdot \mathbb{K}}$ 2) $\frac{\square \mathbb{X}}{\mathbb{K}\Gamma}$ 3) $\frac{\square \mathbb{X}}{\mathbb{K}}$ 4) $\mathbb{Z}\mathbb{X}$ 5) \mathbb{K}

8. Если концентрация молекул идеального газа $n = 2.0 \cdot 10^{25} \,\mathrm{m}^{-3}$, а средняя кинетическая энергия поступательного движения молекул газа $\langle E_{\kappa} \rangle = 3.0 \cdot 10^{-21} \,\mathrm{Дж}$, то давление p газа равно:

1) 45 кПа 2) 40 кПа 3) 20 кПа 4) 15 кПа 5) 10 кПа

9. На p-V диаграмме изображён процесс $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$, проведённый с одним молем газа. Положительную работу A газ совершил на участке:

1) $0 \rightarrow 1$ 2) $1 \rightarrow 2$ 3) $2 \rightarrow 3$ 4) $3 \rightarrow 4$ 5) $4 \rightarrow 5$

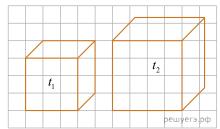
10. Установите соответствие между прибором и физической величиной, которую он измеряет:

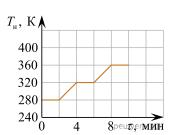
 А. Вольтметр
 1) сила тока

 Б. Барометр
 2) электрическое напряжение

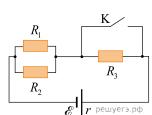
 3) атмосферное давление

 1) А1Б2
 2) А1Б3
 3) А2Б1
 4) А2Б3
 5) А3Б2

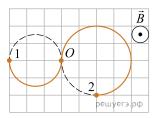

- 11. В момент начала отсчёта времени $t_0=0$ с два тела начали двигаться из одной точки вдоль оси Ox. Если зависимости проекций скоростей движения тел от времени имеют вид: $\upsilon_{1x}(t)=A+Bt$, где A=21 м/c, B=-1,2 м/c 2 и $\upsilon_{2x}(t)=C+Dt$, где C=-12 м/c, D=1,0 м/c 2 , то тела встретятся через промежуток времени Δt , равный ... \mathbf{c} .
- **12.** Два груза массы $m_1=0.5$ кг и $m_2=0.3$ кг, находящиеся на гладкой горизонтальной поверхности, связаны легкой нерастяжимой нитью (см. рис.). Грузы приходят в движение под действием сил, модули которых зависят от времени по закону: $F_1=At$ и $F_2=2At$. Если

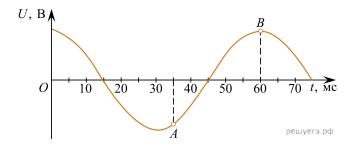

нить разрывается в момент времени t=6 с от начала движения и модуль сил упругости нити в момент разрыва $F_{\rm ynp}=29$ H, то коэффициент

пропорциональности A равен ... $\mathbf{H/c}$. Ответ округлите до целых.

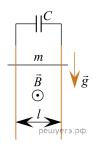

- 13. Тело свободно падает без начальной скорости с высоты H=30 м. Если на высоте h=20 м потенциальная энергия тела по сравнению с первоначальной уменьшилась на $\Delta E_{\Pi}=3.0$ Дж, то его масса m равна ... г.
- **14.** Два тела массами $m_1 = 4,00$ кг и $m_2 = 3,00$ кг, модули скоростей которых одинаковы ($\upsilon_1 = \upsilon_2$), двигались по гладкой горизонтальной поверхности во взаимно перпендикулярных направлениях. Если после столкновения тела движутся как единое целое со скоростью, модуль которой u = 10,0 м/с, то количество теплоты Q, выделившееся при столкновении, равно ... Дж.
- **15.** В баллоне находится идеальный газ массой $m_1 = 700$ г. После того как из баллона выпустили некоторую массу газа и понизили абсолютную температуру оставшегося газа так, что она стала на $\alpha = 20,0$ % меньше первоначальной, давление газа в баллоне уменьшилось на $\beta = 40,0$ %. Масса m_2 газа в конечном состоянии равна ... г.
- **16.** Два однородных кубика (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого кубика $t_1 = 1,0$ °C, а второго $t_2 = 92$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t кубиков равна ... °C.

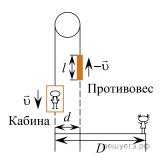
17. На рисунке изображен график зависимости температуры $T_{\rm H}$ нагревателя тепловой машины, работающей по циклу Карно, от времени τ . Если температура холодильника тепловой машины $T_{\rm X}=-3$ °C, то максимальный коэффициент полезного действия $\eta_{\rm max}$ машины был равен ... %.


18. На рисунке представлена схема электрической цепи, состоящей из источника тока, ключа и трех резисторов, сопротивления которых $R_1=R_2=4,00$ Ом, $R_3=2,00$ Ом. По цепи в течение промежутка времени t=20,0 с проходит электрический ток. Если ЭДС источника тока $\epsilon=12,0$ В, а его внутреннее сопротивление r=2,00 Ом, то полезная работа $A_{\rm полезн.}$ тока на внешнем участке цепи при разомкнутом ключе K равна ... Дж.


19. Зависимость силы тока I в нихромовом $\left(c = 460 \frac{\text{Дж}}{\text{кг} \cdot \text{K}}\right)$ проводнике, масса которого $m = 100 \, \text{G}$

32 г и сопротивление R=1,4 Ом, от времени t имеет вид $I=B\sqrt{Dt}$, где B=60 мА, D=2,0 с⁻¹. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\Delta t=3,0$ мин после замыкания цепи изменение абсолютной температуры ΔT проводника равно ... К.

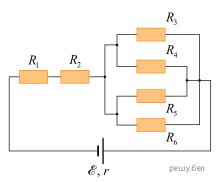

20. Два иона (1 и 2) с одинаковыми заряди $q_1=q_2$, вылетевшие одновременно из точки O, равномерно движутся по окружностям под действием однородного магнитного поля, линии индукции \vec{B} которого перпендикулярны плоскости рисунка. На рисунке показаны траектории этих частиц в некоторый момент времени t_1 . Если масса первой частицы $m_1=36$ а.е.м., то масса второй частицы m_2 равна ... а. е. м.


21. Напряжение на участке цепи изменяется по гармоническому закону (см. рис.). В момент времени $t_{\rm A}$ = 35 мс напряжение на участке цепи равно $U_{\rm A}$, а в момент времени $t_{\rm B}$ = 60 мс равно $U_{\rm B}$. Если разность напряжений $U_{\rm B}-U_{\rm A}$ = 66 В, то действующее значение напряжения $U_{\rm B}$ равно ... **В**.

22. В однородном магнитном поле, модуль индукции которого B=0.35 Тл, находятся два длинных вертикальных проводника, расположенные в плоскости, перпендикулярной линиям индукции (см. рис.). Расстояние между проводниками l=12.0 см. Проводники в верхней части подключены к конденсатору, ёмкость которого C=1 Ф. По проводникам начинает скользить без трения и без нарушения контакта горизонтальный проводящий стержень массой m=2,1 г. Если электрическое сопротивление всех проводников пренебрежимо мало, то через промежуток времени $\Delta t=0.092$ с после начала движения стержня заряд q конденсатора будет равен ... **мКл**.

- **23.** На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1=546$ нм дифракционный максимум четвертого порядка ($m_1=4$) наблюдается под углом θ , то максимум пятого порядка ($m_2=5$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите в нанометрах.
- **24.** Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D=8,0 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l=4,1 м, движущегося на расстоянии d=2,0 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=3,0$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите а сантиметрах в секунду.

25. Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.

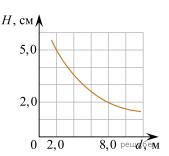

26. Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6 = 90,0$ Вт. Если внутреннее сопротивление источника тока r = 4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.


28. Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.

29. В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4\ \frac{\mathrm{pag}}{\mathrm{c}},$ то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

